primeqa.mrc.processors.postprocessors.extractive.ExtractivePostProcessor#
- class primeqa.mrc.processors.postprocessors.extractive.ExtractivePostProcessor(*args, n_best_size: int, scorer_type=SupportedSpanScorers.WEIGHTED_SUM_TARGET_TYPE_AND_SCORE_DIFF, output_confidence_feature: bool = False, confidence_model_path: Optional[str] = None, **kwargs)#
Bases:
primeqa.mrc.processors.postprocessors.abstract.AbstractPostProcessor
Post processor for extractive QA (use with ExtractiveQAHead).
Methods
Convert examples into references for use with metrics.
Convert data and model predictions into MRC answers.
Convert data and model predictions into MRC answers and references for use in metrics.
- prepare_examples_as_references(examples: datasets.arrow_dataset.Dataset) List[Dict[str, Any]] #
Convert examples into references for use with metrics.
- process(examples: datasets.arrow_dataset.Dataset, features: datasets.arrow_dataset.Dataset, predictions: Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray])#
Convert data and model predictions into MRC answers.
- process_references_and_predictions(examples, features, predictions) primeqa.mrc.data_models.eval_prediction_with_processing.EvalPredictionWithProcessing #
Convert data and model predictions into MRC answers and references for use in metrics.