primeqa.calibration.train_confidence_calibrator.DataTrainingArguments#

class primeqa.calibration.train_confidence_calibrator.DataTrainingArguments(dataset_name: str = 'tydiqa', dataset_config_name: str = 'primary_task', overwrite_cache: bool = False, relative_confidence_train_size: float = 0.1, confidence_dataset_dir: Optional[str] = None, preprocessing_num_workers: Optional[int] = None, max_seq_length: Optional[int] = None, max_q_char_len: int = 128, single_context_multiple_passages: bool = False, max_contexts: Optional[int] = None, max_train_samples: Optional[int] = None, max_eval_samples: Optional[int] = None, doc_stride: int = 128, n_best_size: int = 20, n_best_logits: int = 20, max_answer_length: int = 32, negative_sampling_prob_when_has_answer: float = 0.01, negative_sampling_prob_when_no_answer: float = 0.04)#

Bases: object

Arguments pertaining to what data we are going to input our model for training and eval.

Methods

Attributes

confidence_dataset_dir

dataset_config_name

dataset_name

doc_stride

max_answer_length

max_contexts

max_eval_samples

max_q_char_len

max_seq_length

max_train_samples

n_best_logits

n_best_size

negative_sampling_prob_when_has_answer

negative_sampling_prob_when_no_answer

overwrite_cache

preprocessing_num_workers

relative_confidence_train_size

single_context_multiple_passages