primeqa.calibration.train_confidence_calibrator.DataTrainingArguments#
- class primeqa.calibration.train_confidence_calibrator.DataTrainingArguments(dataset_name: str = 'tydiqa', dataset_config_name: str = 'primary_task', overwrite_cache: bool = False, relative_confidence_train_size: float = 0.1, confidence_dataset_dir: Optional[str] = None, preprocessing_num_workers: Optional[int] = None, max_seq_length: Optional[int] = None, max_q_char_len: int = 128, single_context_multiple_passages: bool = False, max_contexts: Optional[int] = None, max_train_samples: Optional[int] = None, max_eval_samples: Optional[int] = None, doc_stride: int = 128, n_best_size: int = 20, n_best_logits: int = 20, max_answer_length: int = 32, negative_sampling_prob_when_has_answer: float = 0.01, negative_sampling_prob_when_no_answer: float = 0.04)#
Bases:
object
Arguments pertaining to what data we are going to input our model for training and eval.
Methods
Attributes
confidence_dataset_dir
dataset_config_name
dataset_name
doc_stride
max_answer_length
max_contexts
max_eval_samples
max_q_char_len
max_seq_length
max_train_samples
n_best_logits
n_best_size
negative_sampling_prob_when_has_answer
negative_sampling_prob_when_no_answer
overwrite_cache
preprocessing_num_workers
relative_confidence_train_size
single_context_multiple_passages